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Introduction

The world of homotopy coherent category theory can be modelled in many different
ways. One of the most powerful involves the use of the category of simplices and
simplicial sets which allow us to combinatorially encode and express homotopical
properties.

We begin by detailing simplicial homotopy, and then go on to look into the world
of model categories.

Our main model category of interest will be the Quillen model category of simpli-
cial sets which as a model category is equivalent to the category of topological spaces.
We will then introduce the complete n-fold Segal space model for (∞, n)-categories
using this model category of simplicial sets.

0.1 Simplicial sets and spaces

1. For the same reasons that we enjoy working with CW complexes instead of general
topological spaces we might want to abstract further and consider a combinatorial
description of homotopy. In turns out that simplicial sets are exactly the right tool for
this purpose. In this first section we will build towards the result that the homotopy
theory of simplicial sets is ‘equivalent’ to the homotopy theory of spaces.

The results and definitions in this first section may be found in [2, Goerss-Jardine].

Definition 2. The simplex category ∆ is the category whose objects are linearly
ordered sets [n] := {0 < 1 < ... < n} and whose morphisms are order preserving
functions.

Definition 3. A simplicial set is a functor X : ∆op → Set. These form the category
sSet where the morphisms are natural transformations, (X([n]) → Y ([n]) ∈ Set)n∈N.

Definition 4. More generally, for any category C a simplicial object is a functor
∆op → C.

Example 5. One fundamental example of a simplicial set is ∆n : ∆op → Set where
∆n([k]) is the set of

(
n
k

)
elements which correspond to the k-dim faces of the convex

hull of n+ 1 points.

Construction 6. The above example hints at the fact that the simplex category ∆
embeds into sSet by the Yoneda embeddingよ:∆ → sSet; [n] → Map(−, [n]) where
the maps [n] → [m] correspond 1-1 with maps ∆n → ∆m.
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Example 7. Another example is the singular simplicial set of a space. For a space
X we define Sing(X) : ∆op → Set sends [n] to Map(|∆n|, X) ∼= Map(Dn, X).

Construction 8. Define the geometric realisation functor | · | : ∆ → Top as follow-
ing:

• the set [n] ∈ ∆ is sent to the subspace
{(x0, ..., xn)|

∑
i xi = 1, xi ≥ 0} ⊆ Rn+1 with the subspace topology;

• the morphism ϕ : [n] → [m] is sent to |ϕ|; (t0, ..., tn) 7→ (s0, ..., sm) where

si =

{
0, ϕ−1(i) = ∅,∑

ϕ−1(i), otherwise.

Figure 1: Geometric realisation of ∆1 and ∆2.

The following proposition formalises the intuition given in Figure 2 that simplicial
sets arise from the gluing of simplices.

Proposition 9. Every simplicial set can be written as a colimit of simplicial sets in
よ(∆).

10. Analogous to constructing a CW complex (using pushouts of copies of Dn and
attaching via boundary maps) we may also ‘glue’ together simplicial sets using ∆n’s.
The key differences are the following:

• simplicial sets are not spaces, they are combinatorial abstractions of CW com-
plexes;

• unlike CW complexes where the gluing maps can be any maps from the bound-
ary of a cell, the gluing in of simplicial sets is specified by mappings on vertices,
which are linearly interpolated when you take the geometric realisation.
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Figure 2: Simplicial set intuition: 0-cells, 1-cells, 2-cells.

For a simplicial set X, Xm := X([m]) is the set of m-cells and the image of inclusion
[m] ↪→ [m+ 1] ∈ ∆ under X (Xm+1 → Xm) give the attaching maps.

Definition 11. A kan fibration is a morphism of simplicial sets X
p−→ Y that satisfies

the right lifting property with respect to all ∧n
k horn inclusions.

∧n
k X

∆n Y

p∃

Definition 12. The functor Sing : Top → sSet sends a topological space X to the
its singular simplicial set Sing(X) : ∆op → Set; [n] 7→ Map(|∆n|, X).

Definition 13. For paths α, β : ∆1 → X in Kan complexX, a (simplicial) homotopy
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h : f ≃ g is the data of the following commutative diagram.

∆1 ×∆0

∆1 ×∆1 X

∆1 ×∆0

id× d0 α

h

id× d1 β

Here d0 and d1 are specified by inclusions [0] ↪→ [1] into 0 and 1 respectively.

Kan complexes are spaces

Remark 14. The condition for having all ∧n
k horn fillers specifies that you can

concatenate (1 ≤ k ≤ n− 1) and invert (k ∈ {0, n}) all paths and homotopies up to
homotopy.

Lemma 15. For all Kan complexes K we have an isomorphism of homotopy groups
induced by geometric realisation:

πn(K, v) ∼= πn(|K|, v).

Proof. By induction.
Base case:
Injectivity: A simplicial set X may be expressed as the coproduct of its connected
components ⨿iX

i. Geometric realisation is a left adjoint and so preserves colimits,
in particular it preserves coproducts and so | ⨿i X

i| ∼= ⨿i|X i|. Therefore, if |X| has
only one connected component, X does too, and so π0(|.|) is injective.
Surjectivity: Any point in y ∈ |X| must belong to the geometric realisation of some
simplex ∆n α−→ X. Since |∆n| is path-connected for all n, the point y belongs to the
same path component of some vertex |v| ∈ α. Hence, v is in the preimage of y, and
so π0(|.|) is surjective.
Inductive step:

For Kan complex K consider the path space fibration PK
q−→ K:

• we define PK := {[γ]|γ is a path in K starting at v ∈ K0};

• the notation [.] means taking the rel ∂∆1 homotopy class;

• and q is projection onto the endpoint of γ.
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(We saw the analogous construction in Hatcher to show existence of a universal
covering space in the proof of the Galois correspondence [3, p.64].)

Now we show that πn(PK) = 0 for all n ∈ N. The following is a commutative
diagram of pullbacks, where q is our path space fibration.

PX Map(∆1, X)

X X ×X ∼= Map(∂∆1, X)

∆0 X

(source, target)

proj1

v

q

(v, id)

⌜

⌜

Now we use that the vertical map Map(∆1, X)
target−−−→ X has the right lifting

property with respect to all boundary inclusions ∂∆n → ∆n. This implies that
PX → X → ∆0 has the same property. We have that the following diagram com-
mutes.

∂∆n

PX Map(∆1, X)

∆n

∆0 Xv

∃

Since the front face (above, in blue) is a pullback square we get a unique map (below,
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in red) that makes the whole diagram commute.

∆n

PX Map(∆1, X)

∆0 Xv

∃!

⌜

Then, considering the fibre over v, ΩK, we use the long exact sequence of homo-
topy groups from the fibration ΩK ↪→ PK

q−→ K [3, Thm.4.41] to get isomorphism

0 πn+1(K, v) ∼= πn(ΩK, v) 0

πn+1(PK, v) πn(PK, v)

We may do exactly the same for fibration |ΩK| ↪→ |PK| q−→ |K| to get

πn+1(|K|, v) ∼= πn(|ΩK|, v).

Assuming, πn(K, v) ∼= πn(|K|, v) for all K we conclude that

πn+1(K, v) ∼= πn(ΩK, v) ∼= πn(|ΩK|, v) ∼= πn+1(|K|, v).

Thus our proof by induction is complete.

Proposition 16. The counit of the adjunction |Sing(X)| → X is a weak equivalence
of spaces.

Proof. We use the adjunction HomsSet(X,Sing(Y )) ∼= HomTop(|X|, Y ) on maps
∆n → Sing(X) to get the isomorphism πn(Sing(X), v) → πn(X, v) and using Lemma
15 take the composite

πn(|Sing(X)|, v) ∼= πn(Sing(X), v)
∼=−→ πn(X, v).
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Corollary 17. Every space X is weakly equivalent to the geometric realisation of a
Kan complex.

18. There are equivalent simplicial formulations of many major theorems in homo-
topy theory, such as Van Kampens theorem. However, in the simplicial setting you
have access to powerful combinatorial machinery that you cannot access in the usual
homotopy theory of spaces. Even with these tools, since the homotopy theories of
both are equivalent, we may utilise all the homotopical results of simplicial homotopy
theory for spaces.

19. Another way to look at categories which admit a notion of homotopy is to
consider higher categories, and not just categories with 1-morphisms, 2-morphisms,
or even 3-moprhisms, but categories with k-morphisms for every k ∈ N.

Definition 20. Let X be a simplicial set.

∧n
k X

∆n

g

f

If the diagram above commutes then f is called a horn filler. If for every map ∧n
k → X

there exists an extension ∆n → X then X satisfies the ∧n
k horn filler condition (often

called the Kan extension condition [5, p. x, 8]).

Definition 21. If simplicial set X satisfies the ∧n
k horn filler condition for all n ≥ 2

and n ≥ k ≥ 0 then X is an ∞-groupoid. This definition coincides with the Kan
complex model for ∞-groupoids [5, Def. 1.1.2.1].

Definition 22. For simplicial set X, if the ∧n
k horn filler condition is satisfied for

0 < k < n, n ≥ 2 then X is an (∞, 1)-category [5, Def. 1.1.2.4]. Here we have given
the quasicategories model of (∞, 1)-categories.

23. We will now consider a different invariants of spaces which are a generalisation
of ordinary homology. We will see which types of homotopy are important here.

0.2 Factorisation homology

24. Ordinary or generalised homology or homotopy may be a good invariant for
topological spaces in general, but when dealing with manifolds we would like our in-
variants to respect diffeomorphism but not homotopy equivalence, to respect isotopy
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but not homotopy. None of the invariants we have seen so far are sensitive enough
for such a task so let us define another.

The definitions and results of this section may be found in [7, Tanaka].

Definition 25. The symmetric monoidal category Diskn,fr has objects disjoint
unions of Rn and morphisms embeddings where the fr denotes we may equivalently
consider our objects as n-cubes In and our embeddings as rectilinear embeddings as
in Figure 3.

In particular, Diskn,fr contains the 0-fold disjoint union of Rn, the empty mani-
fold ∅. The monoidal product is disjoint union ⨿ with ∅ as the unit.

Figure 3: Rectilinear embeddings and isotopies of two n-cubes into an n-cube for
n = 1, 2, 3.

Proposition 26. A symmetric monoidal functor from Diskn,fr to any other sym-
metric monoidal category C⊗ is an En-algebra in C⊗.

Example 27. Take Vect⊗k the category of vector spaces over field k and linear
transformations with the tensor product. Then a symmetric monoidal functor F :
Disk⨿

n,fr → Vect⊗k is a k-algebra where the embedding R ⨿ R → R gives the multi-
plication A⊗ A → A under F .

For n = 1 A is non-commutative and for n ≥ 2 A is commutative. In all cases,
multiplication, associativity, and unitality are up to isomorphism of vector spaces.

Definition 28. Let A be a En-algebra A : Disk⨿
n,fr → C⊗. The n-dimensional

factorisation homology with coefficients in A of manifold X is the left Kan extension
of A along inclusion Disk⨿

n,fr ↪→ Mlfd⨿n,fr.
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Disk⨿
n,or C⊗

Mfld⨿
n,or

A

i LaniA =:
∫
A

Example 29. Vect is an easy example to give but it loses some of the higher ho-
motopical information of our spaces and embeddings. Lets give the example of
∞-category Chaink instead.

Objects of Chaink are cochain complexes (C•, ∂C) of vector spaces over k, 1-
morphisms are chain maps (fi : Ci → Di)i∈N, 2-morphisms are chain map homotopies
(hi : Ci → Di−1)i∈mathbbN such that ∂Dh+ h∂C = f − g, and k-morphisms for k ≥ 1
are degree −k maps from C• → D• for which the same equation holds where f and
g are k − 1-morphisms.

... Ci−1 Ci Ci+1 ...

... Di−1 Di Di+1 ...

gi−1fi−1 hi fi gi hi+1 fi+1 gi+1

Remark 30. For a functor F : Diskn,fr → Chain⊗
k embeddings in Diskn,fr are sent

to chain maps, isotopies of embeddings are sent to chain map homotopies, and so
on.

Remark 31. We have that Diskn,fr-algebras are precisely En-algebras. Preserving
framing is analogous to rectilinearity of embeddings in the little n-cubes operad.

Lemma 32. Assume C⊗ is an ∞-category admitting all sifted colimits and ⊗ com-
mutes with sifted colimits in each variable. Then factorization homology can be made
symmetric monoidal; we may supply equivalences:∫

X⨿Y

A ≃
∫
X

A⊗
∫
Y

A.

Theorem 33. Excision. Given the symmetric monoidal left Kan extension of such
a C⊗ then the factorisation homology

∫
A is a local-global invariant in the following

way:
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∫
X⨿R×WY

A ≃
∫
X

A⊗∫
R×W A

∫
Y

A.

It preserves certain nice pushouts in Mfld, where for an n − 1-manifold W the
intersection of manifolds is homeomorphic toW×R. For C⊗ = Vect⊗ these pushouts
are the relative tensor product of k-algebras.

Remark 34. We also may conclude that for Vect⊗ the factorisation homology such
that

∫
Rn = A on Rn with the reverse orientation is A∗ the dual of A.

Example 35. Let us compute the factorisation homology of the circle with coeffi-
cients in A ∈ Vect⊗k .

Figure 4: Oriented circle, two positively oriented copies of R, S0 × R where S0 has
the standard orientation {+,−}.

Figure 5: Decomposition of the circle in Mfld⨿
n,or.
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Preserving framing is the same as preserving orientation in this example. So
copies of R− (with negative orientation) must be embedded into positively oriented
copies of R+ in the reverse direction, as in the figure below. We have that

Figure 6: Oreintation preserving embedding R+ ⨿ R− → R+.

∫
S1

A ≃
∫

R⨿S0×RR
A ≃

∫
R

⊗
S0×R

∫
R
A ≃ A

⊗
A⊗A∗

A.

36. We may in general consider factorisation homology on oriented manifolds or in
fact on any class of manifolds whose tangent spaces admit a G-action for a topological
group G.

Definition 37. Suppose we have a map of topological groups G
p−→ Gln(R) then

a tangential G-structure on a smooth manifold X is the data of a commutative
triangle and homotopy:

BG BGln(R)

X

B(p)

ϕX
≃

Remark 38. For G = SO(n) we consider manifolds equipped with an orientation
Mfldn,or. For G = ∗ we consider manifolds equipped with a framing Mfldn,fr.

Remark 39. A map which factors through BG = {∗} is a trivialisation of X. There-
fore, manifolds which admit a framing have tangent bundles which are essentially
constant, meaning that we have a homotopy between a trivialisation of X and its
tangent bundle.

Remark 40. The classifying space of Gln(R), BGln(R) is Grn(R∞), the space of

subspaces of Rn. The classifying space of SO(n) is G̃rn(R∞): the space of subspaces
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of Rn with positive orientation, by which we mean that the matrix of basis vectors
of the subspace has positive determinant.

So an orientation on a manifold is such that the tangent spaces at each point all
have positive orientation, or all have negative orientation.

Lemma 41. We have the following homotoopy equivalence of orientation preserving
embeddings of Rn into itself, with the special orthogonal topological group:

Embor(Rn,Rn) ≃ SO(n).

Proof. Let Embor0 (Rn,Rn) denote the embeddings which fix the origin then there
exists a homotopy h(j, t) = j − tj(0) which gives the equivalence

Embor(Rn,Rn) ≃ Embor0 (Rn,Rn).

Then take the deformation retraction h′(j, t)(v) = j(0+tv)−f(0)
t

= f(tv)
t

which gives us
the equivalence

Embor0 (Rn,Rn) ≃ Gl+n (R).

The final equivalence

Gl+n (R) ≃ SO(n)

is given by the Gram-Schmidt process.

Lemma 42. The space of frame preserving embeddings of Rn into itself Embfr(Rn,Rn)
is contractible.

Proof. Similar to the proof above for oriented embeddings we just notice that pre-
serving framing implies there is no rotation, so every embedding is in the homotopy
class 1 ∈ SO(n). Embfr(Rn,Rn) ≃ Embfr0 (Rn,Rn) ≃ Gl+n (R) ≃ ∗.

Remark 43. For the framed case, by the data of the homotopy of the framing there
is always a homotopy to an embedding which preserves the trivialisation of Rn.

Remark 44. It seems that having a tangential G-structure ensures that any G-
structure compatible decomposition of a manifold gives us the same invariant in our
factorisation homology.

So let us give the most general definition with our new understanding of tangential
G-structures.
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Definition 45. Let A be a Diskn,G-algebra A : Disk⨿
n,G → C⊗. The n-dimensional

factorisation homology with coefficients in A of manifold X is the left Kan extension
of A along inclusion Disk⨿

n,G ↪→ Mlfd⨿n,G.

Disk⨿
n,or C⊗

Mfld⨿
n,or

A

i LaniA =:
∫
A

0.3 Model categories

46. Factorisation homology plays a central role in an area of maths that looks at
functors called topological quantum field theories (TQFTs), in that they are similarly
define and themselves correspond to a subset of TQFTs.

TQFTs have been a driving force in the development of higher category theory,
in particular that of (∞, n)-categories. This is largely due to a very important
hypothesis called the cobordism hypothesis, which is a statement about how a TQFT,
which gives us invariants of manifolds, is fully determined by its value on the point.
If you’re dealing with 1 manifolds then inf, 1-category theory suffices, but if you want
to look at n-manifolds then you need to be able to consider k-manifolds as morphisms
between k − 1-manifolds for all k ≤ n. Let us introduce one particular model for
(∞, n)-categories attributed to Segal.

All definitions and results of this section may be found in [4, Hovey].

Construction 47. Let category Ar(C) of morphisms of a category C have objects
as morphisms f and g in C and morphisms as commuting squares.

A C

B D

f g

Definition 48. A retract of morphism f in category C is an morphism g such that
in Ar(C) there are maps f → g and g → f that compose to the identity on f , as in
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the following diagram.

A C A

B D B

idA

f g f

idB

Notation 49. Let A and B be subcategories of C. If all morphisms f ∈ A have
the left lifting property with respect to all morphisms in B, we shall denote this by
AL⊥RB and say that A and B are orthogonal.

Definition 50. A model structure on category C is the following data:

• three subcategories of C: weak equivalencesW, fibrations Fib, and cofibrations
Cof ;

• two functorial factorisation systems (α, β) and (γ, δ).

Such that the following conditions hold:

(M1) (2-out-of-3) if any two of g, f and gf are weak equivalences then so is the
third;

(M2) the categories W, Fib and Cof are closed under retracts;

(M3) for trivial fibrations FibW:= Fib ∩ W and trivial cofibrations
CofW:= Cof ∩ W we have that CofL⊥R FibW and CofWL⊥RFib;

(M4) for all f , (α(f), β(f)) ∈ Cof× FibW and (γ(f), δ(f)) ∈ CofW × Fib.

Definition 51. A model category M is a bicomplete category endowed with a model
structure. An object A ∈ M is called fibrant if the unique map to the terminal object
A → ∗ is a fibration. Dually, an object A is called cofibrant if the unique map from
the intial object ◦ → A is a cofibration.

Construction 52. The category of topological spaces Top has the following model
structure:

• the weak equivalences are weak homotopy equivalences;
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Figure 7: A model structure on Top

• the fibrations are Serre fibrations : maps of topological spaces that have the
right lifting property with respect to the geometric realisation of all ∧n

k horn
inclusions for n ≥ 2;

• cofibrations are all morphisms that have the left lifting property with respect
to trivial fibrations.

Another example allows us to combinatorially encode homotopical information
of spaces.

Construction 53. The category of simplicial sets sSet admits a model structure
due to Quillen, denoted sSetQ, specified by the following data:

• weak equivalences morphisms f such that |f | is a homotopy equivalence;

• fibrations are Kan fibrations;

• cofibrations are monomorphisms m : X → Y in sSet, families of injective maps
(X([n]) → Y ([n]))n∈N.

Definition 54. The homotopy category h1(C) of model category C has objects of C
and morphisms as homotopy classes of morphisms of C.
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0.4 Complete Segal space model of (∞,n)-categories

55. In the quasicategory model for ∞-categories all k-morphisms for k greater than
1 are invertible, so the next question is do we have a model for categories with
non-invertible higher morphisms?

The definitions and results of this section may be found either in [6, Scheimbauer]
or [1, Scheimbauer-Calaque].

Definition 56. An n-fold Segal space is an n-fold simplicial space

X : (∆op)n → sSetQ

X ∈ sSpaces := Fun((∆op)n, sSetQ) := Fun((∆op)n, Spaces) (which is also an
n+ 1-fold simplicial set), such that:

• X is level-wise fibrant: for all k1, ..., kn ∈ N, Xk1,k2,...,kn is a fibrant object of
sSetQ, i.e. Xk1,k2,...,kn is a Kan complex;

• X satisfies the Segal condition: for n=1 this is Xn×X0 Xm ≃ Xn+m. In general
we have that

Xi1,...,im−1,•,im+1,...,in : ∆op → sSpaces

satisfies the Segal condition.

Definition 57. A Segal space satisfies essential constancy if and only if

Xk1,. . . ,ki1,0,0,. . . ,0 → Xk1,. . . ,ki1,0,ki+1,. . . ,kn

is an equivalence of spaces. An n-uple Segal space with this condition is termed
n-fold.

Definition 58. An n-uple Segal space X is complete if

X0,...,0 ≃ X inv
1,0,...,0

such that the kan complexX0 is the ‘maximal’∞-groupoid in the class of Segal spaces
that give rise to an equivalent (∞, n)-category, which means that all the invertible
1-morphisms in X1,0,...,0 up to a choice of path are the identity.

We may recover the n-fold CSSs from a model structure on sSpaces.

Construction 59. • Let sSetQuil be sSet with the Quillen model structure.
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Figure 8: Two Segal spaces X (complete) and Y (not complete) that give rise to
equivalent (∞, n)-categories.

• As sSetQuil ≃ Top := Spaces, we define simplicial spaces as simplicial objects
in Spaces.

• The model structure on sSetQuil extends to sSpaces = Fun((∆op)n, sSetQuil)
where morphisms η : X• → Y• in sSpaces are fibrations if for every object
ϕ := ([k1], [k2], ..., [kn]) ∈ (∆op)n ηϕ : Xϕ → Yϕ is a fibration. This is analogous
for weak equivalences.

• From fibrations and weak equivalences we may determine cofibrations Cof in
the model structure on sSpaces. (This is an example of the projective model
structure on sheaves.)

• Now consider the model structure on sSpaces determined by cofibrations Cof
and Dwyer-Kan equivalences as weak equivalences.

• The fibrant objects of this model structure are n-fold complete segal spaces.

60. We will now give some exposition on interpreting an n-fold CSS as an (∞, n)-
category. For an n-fold complete Segal space X we may consider the following:

Data:

• Objects are X0,...,0

• 1-morphisms are X1,0,...,0, 2-morphisms are X1,1,0,...,0, etc.

• By essential constancy Xk,l,m,0,...,0 is the set of all diagrams in X which consist
of the following:

– k + 1 objects
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– k(l+1) many (primitive) 1-cells ((l+1) k-tuples of composable 1-morphisms),

– l(m+ 1) many primitive 2-cells,

– k × l ×m many 3-cells,

– (no higher (non-trivial) morphisms)

Composition:

• By the Segal condition

X1,1,0,...,0 ×X1,0,0,...,0 X1,1,0,...,0 ≃ X1,2,0,...,0

which tells us that X1,2 are the 2-tuples of vertically composable 2-morphisms,
and

X1,1,0,...,0 ×X1,0,0,...,0 X1,1,0,...,0 ≃ X2,1,0,...,0

which expresses X2,1 as the 2-tuples of horisontally composable 2-morphisms.

• There are maps X1,2,0,...,0 → X1,1,0,...,0: horisontal composition of 2-morphisms,
and X2,1,0,...,0 → X1,1,0,...,0: vertical composition of 2-morphisms and analogous
generalisations to k-morphisms.

• a morphism is invertible if its image under the map which sends a pullback to
π0 of the homotopy pullback is invertible in the homotopy category of a CSS.

The below diagram shows an ordinary pullback of spaces (left) next to a homo-
topy pullback of spaces for Segal space X. Here the map s is the source map and
Hom(x,X0) := {f |f ∈ Paths(x, y), y ∈ X0}.

Hom(x,X0) X1 π0(Hom(x,X0)) X1

{x} X0 {x} X0

⌜
s

⌜
s≃

Redundancy: The space X1,1,...,1,0,...,0 of k-morphisms has the data of:

• all k-morphisms (points),

• invertible k + 1-morphisms (paths),
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• invertible k+2-morphisms between invertible k+1-morphisms (paths of paths),
etc. And so X encodes the data of invertible morphisms of the corresponding
(∞, n)-category many times over.

Example 61. We give the Morita bicategory as an n-fold Segal space.

• X0,0: the objects are rings

• X1,0: morphisms are bimodules;

• X0,1: vertical 2-morphisms are rings as bimodules over themselves (which gives
us the essential constancy condition);

• X1,1: horisontal (usual) 2-morphisms are bimodule homomorphisms.

In the following diagram we specify the data of the morphisms in X•, 0.

X0,0 X1,0 X2,0id

source

target (−, id)

(id,−)

comp

proj1

proj2

· · ·

Segal space X1,• is analogous. Segal space X2,• also has the same diagram but the
source and target maps give 2-tuples of 1-morphisms, and so on.

Conclusion

In this exposition we have laid a lot of the necessary groundwork to begin to tackle
Schiembauer and Calaque’s paper on the (∞, n)-category of bordism. This construc-
tion was made to bridge the gaps in an important section Lurie’s sketch of a proof
for the cobordism hypothesis.

As the reader has begun to see, the combinatorial formulation of homtopy is very
powerful to aid the organisation of infinite amounts of homotopical coherence data.
This in turn allows us to develop ever more subtle and powerful invariants of spaces
and specifically manifolds, which are incredibly useful to physics and other areas of
mathematics.
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